Hopf and Lie algebras in semi-additive Varieties
نویسنده
چکیده
We study Hopf and Lie algebras in entropic semi-additive varieties with an emphasis on adjunctions related to the enveloping monoid functor and the primitive element functor. These investigations are in part based on the concept of the abelian core of a semi-additive variety and its monoidal structure in case the variety is entropic. MSC 2010: Primary 08B99, Secondary 16T05
منابع مشابه
Hopf Monoids in semi-additive Varieties
We study Hopf monoids in entropic semi-additive varieties (equivalently, entropic Jónsson-Tarski varieties and categories of semimodules over a commutative semiring, respectively) with an emphasis on adjunctions related to the enveloping monoid functor and the primitive element functor. These investigations are based on the concept of the abelian core of a semi-additive variety variety and its ...
متن کاملFixed point approach to the Hyers-Ulam-Rassias approximation of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras
In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for the following $m$-variable additive functional equation: $$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...
متن کاملJ ul 1 99 5 Classical limits , quantum duality and Lie - Poisson structures
Quantum duality principle is applied to study classical limits of quantum algebras and groups. For a certain type of Hopf algebras the explicit procedure to construct both classical limits is presented. The canonical forms of quantized Lie-bialgebras are proved to be two-parametric varieties with two classical limits called dual. When considered from the point of view of quantized symmetries su...
متن کاملApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملAdjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logical Methods in Computer Science
دوره 13 شماره
صفحات -
تاریخ انتشار 2017